
1

Graphics pipelines for mobile and embedded
devices
Leif Andersen

University of Utah

Abstract—Mobile and embedded systems continually require
more powerful graphics. The most common API and hardware
implementation for these graphics is OpenGL ES. Different
versions of OpenGL ES has different types of pipelines that
allow the programmer different amounts of flexibility. Various
implementations of OpenGL can also be optimized for embedded
devices, as well as portability, but at the cost of complexity for
the programmer.

I. INTRODUCTION

Mobile and embedded systems are continually requiring
more powerful computational and graphics hardware. Cell
phones of the past simply needed to display a number on an
LCD screen. Today, phones, such as the ones running Google’s
Android and Apple’s iOS operating systems are expected to
run a wide variety of computationally, and graphics heavy
tasks, such as games [1]. OpenGL is one of two standard
graphics Application programming interface (API) used for
this task, the other being DirectX. OpenGL ES is a version of
OpenGL for embedded systems. Most OpenGL ES code will
work with standard OpenGL, however OpenGL ES is missing
many standard API calls, as well as commonly used libraries,
such as GLU [2].

There are two major versions of OpenGL ES. They are:

1) OpenGL ES 1.x
2) OpenGL ES 2.0

Unlike standard OpenGL, newer versions of OpenGL ES
are not backwards compatible with older versions. OpenGL ES
has other limitations, the rest of which depend on specifically
on the graphics hardware.

OpenGL takes data through several steps before it will
be displayed on the screen. First it goes a series of linear
transformations, and reconstructs the data, (takes data in an
arbitrary subspace into one that OpenGL understands). After
that, it rasterizes the data, which turns it from vector data, to
bitmap data, such as pixels. From there, it determines the color
of the pixel, and puts it through several more buffers. Finally,
the data is put into a frame buffer, which can be shown on the
screen.

Section II will cover the required mathematics to make
the linear transformations, as well as rasterizing and sim-
ple texturing. Section III will compare the deprecated fixed
function pipeline in OpenGL ES 1.x, to the more modern
Programmable Pipeline in OpenGL ES 2.0. Section IV will
discuss some of the limitations of graphics on current em-
bedded systems. Finally, section V will cover commonly used

texture compression schemes, and how it effects the speed of
the rendering.

II. REQUIRED MATHEMATICS

There are two major stages to modern graphics pipelines.
They are:

1) Determining the geometry of the objects being drawn.
2) Determining the texture, lighting, colors, and other par-

ticles of the objects and environment.

A. Geometry

The shape of an object in three space is defined as a
polygon mesh, or simply just mesh. This is a list of vertices in
three space, with edges and faces connecting them. Standard
OpenGL supports many different types of these: triangles,
triangle strips, triangle fans, quads, etc. [3]. Each of these
objects can be represent as list of vertices, and each vertex
can be represented as four integers, equation 1.

x
y
z
1

 (1)

The first three numbers in the vector store the (x, y, z)
values of the vector. The last element of the vector is almost
always saved as 1. This allows the vector in equation 1 to be
manipulated using the equations: 2, translation, 3 scale, and
4 rotation. Where, equation 4 uses c from equation 5 and s
from equation 6.

1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1



x0

y0
z0
1

 =


x+ x0

y + y0
z + z0

1

 (2)


x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1



x0

y0
z0
1

 =


x× x0

y × y0
z × z0

1

 (3)


x2(1− c) + c xy(1− c)− zs xz(1− c) + ys 0
yx(1− c) + zs y2(1− c) + c yz(1− c)− ys 0
zx(1− c)− ys yz(1− c) + xs z2(1− c) + c 0

0 0 0 1


(4)

c = cos(angle) (5)



2

s = sin(angle) (6)

In equation 2, the vector (x0, y0, z0) is translated by the
vector (x, y, z). In the equation 3, the vector (x0, y0, z0)
is scaled up by a factor of (x, y, z). Finally, in equation
4, the vector (x0, y0, z0) (not shown), is rotated around the
axis (x, y, z). To prevent the object from having extraneous
translations, it is best to preform the rotation and scale before
the translation is completed, assuming the mesh is placed at
the origin.

In a modern application, vertices will need to go through
several transformations before they can be drawn on the
screen. A mesh can go from mesh coordinates, which describes
the mesh from some normalized axis, to world coordinates,
which places each object relative to each other object, to
projection coordinates, which moves the world to be viewable
to the camera. There can also be a final translation to clip
coordinates, which is what the graphics library and hardware
uses to determine if a mesh should be drawn. In OpenGL ES,
this is defined as [−1.0, 1.0] in the x, y, and z coordinates
[2]. As these matrices are affine transforms, they can be
collapsed down to a single matrix which the vector can be
put through. Furthermore, because a mesh object is formed of
many vertices, every vertex in the mesh can be put through
the same matrix. Figure 1 demonstrates this process.

Vector
Drawn 

On Screen
Clip Matrix

Projection
Matrix

World
Matrix

Original
Vector

Fig. 1: Standard Vertex Shader Pipe

B. Texturing

The second thing that must be completed is the texturing
phase. This is where any lighting and particle effects are done.
This phase runs through the process of turning the vertex
data determined in the previous section into pixels that can be
drawn on the screen. Only texturing that requires extremely
accurate ray tracing requires the value of other pixels. As such,
every pixel can be done independently, in an individual thread.

A simple algorithm for determining the color of the face
could simply keep a collection of the solid color for each
face, then determine which face is being drawn, and assign
that color to the pixel. A more robust algorithm would store
the image on the graphics card, and find the proper location
on that image for the given face, and draw that color of the
pixel on the screen. An even more elaborate one would involve
dimming or brightening the color based on lighting, and even
surrounding colors.

III. PIPELINES

OpenGL ES provides several different pipelines for produc-
ing the graphics shown on screen. A pipeline takes some data,
and possibly some code, and turns it into an image shown on
screen. The two major types of pipelines are fixed function
pipelines and programmable pipelines. Desktop OpenGL 2.0

and higher supports both types of pipelines. However, Khronos
decided that having both pipelines would be redundant for
mobile platforms. In OpenGL ES 2.0, the fixed function
pipeline was removed, and was replaced with a programmable
one [2].

Fewer devices are capable of running OpenGL ES 2.0 than
OpenGL ES 1.x. If the application in question is being de-
signed for older hardware, than 1.x should be used. However,
with newer hardware, OpenGL ES 2.0 can be used to greatly
speed up performance by creating a pipeline that provides only
the needed functionality. In cases where work is being done for
a broad target range, such as the Android platform, currently,
over 90% of android devices are capable of running OpenGL
ES 2.0 [4]. In addition, the iPhone 3G S, iPod Touch 3, and
iPad, as well as all newer mobile devices from Apple, are
capable of OpenGL ES 2.0 [5].

A. Fixed Function Pipeline

Figure 2 demonstrates the fixed function pipeline in opengl.
The Fixed function pipeline simply takes vertices into the

pipe, loads some matrices, images, and other data into the
graphics processor, and outputs a framebuffer of pixels. The
simplest way to do this is to run OpenGL in immediate mode
using calls to glBegin() and glEnd(). While this is the easiest
way for the programmer to prototype an application quickly,
it is significantly slower at run time. This is due to the cross
talk between the CPU and the GPU, as the CPU needs to tell
the GPU to do anything, as well as constantly load the vertex
data onto the GPU. A more efficient solution would be to load
the data onto the GPU in a single array (called a vertex buffer
object (VBO), and have the GPU preform it’s calculations [3].

In OpenGL ES 1.x, the latter way is the only supported
method of drawing data. This is because Khronos found that
having both modes would be redundant. Furthermore, the only
time glBegin() and glEnd() would be useful is when the
CPU needs to do rather unusual computations that the normal
graphics pipe does not do very well. These applications are
not the primary focus of such embedded devices [6].

B. Programmable Pipeline

Figure 3 is an example of the OpenGL ES 2.0 pipeline.
Unlike the OpenGL ES 1.x pipeline, this pipeline is pro-

grammable. Unlike the desktop edition of OpenGL, it must be
programmed. The missing portions of the pipeline in figure 3
that were in figure 2 can be duplicated with code that the user
types. Unlike the CPU of the mobile device, many programs
need to be written to support multiple types of graphics cards.
As such, the programs that are loaded onto the graphics cards,
called shaders [7], are stored in memory as source code.
Each of the programs are then compiled and loaded onto the
graphics card, where they are linked into the main pipe [2][4].

The following listing shows an example of a simple vertex
shader.

un i fo rm mat4 uMVP;
a t t r i b u t e vec4 a P o s i t i o n ;
a t t r i b u t e vec4 aNormal ;



3

Fig. 2: OpenGLES Fixed Function Pipeline[2]

a t t r i b u t e vec2 aTexCoord ;
v a r y i n g vec2 vTexCoord ;
v a r y i n g vec4 v P r i m a r y C o l o r ;
void main ( ) {

g l P o s i t i o n = uMVP ∗ a P o s i t i o n ;
v P r i m a r y C o l o r = vec4 ( 1 . 0 , 1 . 0 ,

1 . 0 , 1 . 0 ) ;
vTexCoord = aTexCoord ;

}

The variable gl Position is the final output of the vertex on
the screen. uMVP is the matrix the input vertex is multiplied
by to get the final position. The other two variables of type
varying are simply passed onto the fragment shader [2].

The following listing shows an example of a simple frag-
ment shader.

p r e c i s i o n mediump f l o a t ;
un i fo rm sampler2D sTex ;
v a r y i n g vec2 vTexCoord ;
v a r y i n g vec4 v P r i m a r y C o l o r ;
void main ( ) {

g l F r a g C o l o r = t e x t u r e 2 D ( sTex ,
vTexCoord )∗ v P r i m a r y C o l o r ;

}

The variable gl FragColor is used to tell OpenGL what
color to make the pixel being drawn. the texture2D() func-
tion tells OpenGL where in the provided texture given the
stored texture mappings to find the image. The multiplication
vPrimaryColor is simply to state that we want no lighting.
A more advanced shader would then multiply the pixel by the
proper lighting needed to make an image appear to be three
dimensional [2].

More intelligent shader programs can use techniques such
as loop unrolling and precision control for a speed up of over
eight times the performance of the naive algorithms [8].

As with OpenGL ES 1.x, it is best to load data onto the GPU
as an array. glBegin() and glEnd() are not even supported in
openGL ES 2.0. An even faster way to do this would be to
load all of the data onto the GPU at the beginning of the
program, and store it into Vertex Buffer Objects, or VBOs.
This way, all the CPU has to provide is the matrix for the
change in perspective [3]. VBOs are not required in OpenGL
ES 2.0, however, every major android device to date ships
with them. It is still suggested that the program check at run
time if VBOs are supported, and if not, use a more traditional
method to provide data to the GPU [5].

IV. LIMITATIONS OF MOBILE DEVICES

A. Java and Native Bindings
Many embedded devices, especially ones running the An-

droid operating system, use Java as the primary programming
language. OpenGL was designed with C in mind, and is also
possible to use with C++. Java bindings for OpenGL have
been created, however they use the Java Native Interface, or
JNI, an interface which allows C and C++ code to talk to java
code [9]. The problem is that the JNI is slow, and can take
up to several milliseconds per call. This slow performance is
fine for most applications. However, a game that is trying to
run at sixty frames per second cannot afford this wait that
long. It is possible to get around this by making few calls to
OpenGL. Another possible way is to write the entire rendering
code in C++ itself, using the JNI. This is significantly harder
to be programmed though, and unless the code must be cross
platform, it is easier to simply optimize the rendering engine
using the Java bindings [10][11].



4

Fig. 3: OpenGLES Programmable Pipeline[2]

B. Texture Size

Storing texture data is a large problem for all but the most
simple programs. It is optimal to store as many textures as
possible in a single image, and refer to that single image. If
this is not possible, then the next solution is to store the data
in as few images as possible. Older devices such as the HTC
G1 and the could not store images larger than 512x512 pixels.
However, newer devices are capable of much larger images.
It is currently reasonable to assume that any device made in
the past two years is capable of a 2048x2048 resolution image
[5].

V. TEXTURE COMPRESSION

In desktop graphics, it is not vital that textures get com-
pressed to small sizes. Modern hardware is capable of both
storing the larger images, as well as displaying them in real
time. However, on mobile devices, there is much less disk
space to spare, as well as less processing power to draw all
objects. As such, texture compression is needed. There are
four main types of texture compression. They are:

1) ETC1
2) PVRTC
3) ATITC
4) S3TC

A. Raw

It is possible to use draw and store raw images onto a phone.
Using libpng, it is also even to store them in a more popular
format that does save some space. However, the texture must
still be decompressed to be placed on the graphics chip. As
such, this can, at best, only save storage space. At worst, it
will also take up a significant portion of disk space [2].

B. ETC1

ETC1 texture compression is the most common form of
texture compression on phones. While Android phones are
not required to support it, every major phone does [5]. The
Android SDK also provides many tools for making this texture
compression fairy simple [12]. The largest drawback to using
ETC1 is that it is the slowest of all of the texture compressions.
In addition, ETC1 does not support an alpha channel in the
texture. As such, any either two textures must be used for
alpha, or an alpha channel must be sent separately [2][13].

C. PVRTC/ATITC/S3TC

PVRTC, ATITC, and S3TC are texture compressions that
are specific to the creator of the GPUs in the devices they
are used. As all iOS devices use PowerVR for their chips,
PVRTC is the texture compression best suited for ios [5].
ATITC is for ATI cards, and S3TC is for NVidea cards.
These texture compression algorithms do support an alpha
channel. To be most efficient with resources, a programmer
should use these three textures. Any program that uses this
route for texture compression must also support using raw
formats in case the hardware cannot use that compression. The
program should contain algorithms for each of these texture
compression algorithms and then determine at run time which
is to be used based on the creator of the GPU [14].

VI. CONCLUSION

There are two different types of OpenGL ES, a fixed
function pipeline, and a programmable one. There will be
faster results if the graphics code is made using native code
rather than the JNI. However, it is much simpler for the



5

programmer to use Java code to make the OpenGL calls due to
the APIs in the Android SDK. Application performance will be
greatly increased by using texture compression. Furthermore,
the more powerful texture compressions are specific to the
makers of the graphics chips.

REFERENCES

[1] T. Akenine-Moller and J. Strom, “Graphics processing units for hand-
helds,” Proceedings of the IEEE, vol. 96, no. 5, pp. 779–789, 2008.

[2] A. Munshi, D. Ginsburg, and D. Shreiner, The OpenGL ES 2.0 program-
ming guide. Addison-Wesley Professional, 2009.

[3] J. Neider, T. Davis, and M. Woo, OpenGL. Programming guide.
Addison-Wesley Reading, MA, 1997.

[4] Google, “Opengl es versions.” [Online]. Available: developer.android.
com/resources/dashboard/opengl.html, October 2011.

[5] Kishonti, “Glbenchmark.” [Online]. Available: glbenchmark.com, Octo-
ber 2011.

[6] S. Hashimi, S. Komatineni, and D. MacLean, Pro Android 2. Springer,
2010.

[7] R. Rost and J. Kessenich, OpenGL shading language. Addison-Wesley
Professional, 2006.

[8] N. Singhal, J. Yoo, H. Choi, and I. Park, “Design and optimization of
image processing algorithms on mobile gpu,”

[9] Google, “Android ndk.” [Online]. Available: developer.android.com/sdk/
ndk/index.html, October 2011.

[10] C. Pruett, “Writing real-time games for android redux.” [Online]. Avail-
able: developer.android.com/videos/index.html#v=7-62tRHLcHk, Octo-
ber 2011.

[11] I. Valdin, “Graphics optimization for j2me compatible mobile phones,”
in Consumer Electronics, 2006. ISCE’06. 2006 IEEE Tenth International
Symposium on, pp. 1–4, IEEE.

[12] Google, “Android development documentation.” [Online]. Available:
developer.android.com, October 2011.

[13] Google, “Android ndk.” [Online]. Available: developer.motorola.com/
docstools/library/understanding-texture-compression/, October 2011.

[14] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa, “Shader
performance analysis on a modern gpu architecture,” in Proceedings of
the 38th annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 355–364, IEEE Computer Society, 2005.


