
Concrete and Abstract Interpretation: Better Together

Maria Jenkins
University of Utah

mjenkins@eng.utah.edu

Leif Andersen
Northeastern University
leif@leifandersen.net

Thomas Gilray, Matthew
Might

University of Utah
{tgilray, might}@cs.utah.edu

Abstract
Recent work in abstracting abstract machines provides a
methodology for deriving sound static analyzers from a con-
crete semantics by way of abstract interpretation. Conse-
quently, the concrete and abstract semantics are closely re-
lated by design. We apply Galois-unions as a framework for
combining both concrete and abstract semantics, and explore
the benefits of being able to express both in a single seman-
tics. We present a methodology for creating such a unified
representation using operational semantics and implement
our approach with and A-normal form (ANF) λ-calculus for
a CESK style machine in PLT Redex.

1. Introduction
Static analyses aim to reason about the behavior of programs
before run-time and have numerous applications including
compiler optimization, malware detection, and program ver-
ification. Abstract interpretation is a highly general approach
to static analysis which produces interpreters which use an
approximate abstract semantics for evaluation, instead of a
fully precise semantics. Accepting imprecision allows anal-
ysis designers to ensure termination, and indeed a reason-
able bound on the complexity of their analyses. Current tech-
niques in this form of static analyses requires the implemen-
tation of two separate interpreters. As we will show concrete
semantics and abstract semantics frustratingly resemble one
another, leading to large tracts of almost duplicated code in
the implementations.

In the Cousots’ foundational work on abstract interpre-
tation, they note that the concrete semantics of a language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SFP ’14, 11 19, 2014, Washington D.C, USA.
Copyright c© 2014 ACM 978-1-nnnn-nnnn-n/14/11. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

is also a static analysis of that language, albeit an incom-
putable one [3][4]. We exploit this fact to produce a unified
representation of concrete and abstract interpreters we call
a Galois union. We will show that it is possible to system-
atically enhance an abstract interpretation calculated from a
Galois connection (a formal relationship between concrete
and abstract semantics) to form this union. For the cost of a
static analyzer, one gets an interpreter for free.

We further show how to apply this unified framework for
switching between the concrete and abstract semantics mid-
analysis. This allows an analysis to use concrete evaluation
during the initialiation phase of a program so that top-level
definitions are evaluated precisely before switching to an
approximate semantics which ensures termination.

We elucidate a number of additional benefits of our uni-
fied representation of concrete and abstract semantics:

• It saves engineering time and code by removing the ne-
cessity of building a separate interpreter.
• This in-turn promotes maintainability of the code base

and improves robustness because testing the interpreter
simultaneously tests the analyzer and vice versa.
• It provides a unified framework for combining static and

dynamic analysis.

1.1 Contributions
We make the following contributions:

1. Galois unions: A theory for unifying analyses and inter-
preters.

2. The extraction of a CPS interpreter from k-CFA [11, 12].

In the following section we examine the similarity between
a concrete and abstract semantics for the λ-calculus in
continuation-passing-style (CPS). Section 3 presents a re-
view of the theory for producing sound static analyses using
Galois connections and in section 4 we present a unified
theory of Galois unions and how they may be derived auto-
matically from a Galois connection. In section 5 we provide
a case study of the CPS-λ-calculus , in section 6 we dis-

cuss the implementation, and in section 7 we discuss related
work.

2. Semantics of CPS
To demonstrate the similarity of concrete and abstract se-
mantics it is instructive to define a language, show the cor-
responding machine that interprets it, and show the abstract
machine that analyzes it. We do this for the pure λ-calculus
in continuation-passing-style (CPS). This language only per-
mits call-sites in tail-position, so continuations must be rei-
fied as a call-back function to be invoked on the result.[1]

e ∈ Exp = Lam + Var [expressions]
v ∈ Var = 〈variables〉 [variables]

lam ∈ Lam ::= λv1 . . . vn.call [λ-terms]
call ∈ Call ::= e0 e1 . . . en [function application]

2.1 Concrete and Abstract State Space
Below is the concrete machine. We define a concrete state-
space for CPS λ-calculus:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr ⇀ D
d ∈ D = Clo

clo ∈ Clo = Lam× Env
a ∈ Addr = 〈an infinite set of addresses〉,

and an abstract state-space:

ς̂ ∈ Σ̂ = Call>⊥ × Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr → D̂

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam>⊥ × Ênv

â ∈ Âddr = 〈a finite set of addresses〉.
The concrete and abstract state-spaces look very similar.
They differ slightly in their stores. The concrete semantics
has an infinite set of addresses and it maps an address to a
closure. The abstract semantics obtains a finite state-space
by bounding the number of addresses in the store. For this
reason, multiple closures may share an address, so flow-sets
of possible closures are indicated by each address.

2.2 Concrete and Abstract Semantics
The transfer function f : Σ → Σ describes the concrete
semantics:

([[(f æ1 . . . æn)]], ρ, σ)⇒ (ce, ρ′′, σ′)

where ([[(λ (v1 . . . vn) ce)]], ρ′) = A(f, ρ, σ)

di = A(æi, ρ, σ)

ai = alloc(xi, ς)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

where the function A : Exp × Env × Store → D is the
argument evaluator:

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ),

and the allocator alloc : Var × Σ → Addr allocates a fresh
address.

A series of calculations (Appendix A.1) then finds a com-
putable static analysis:

([[(f æ1 . . . æn)]], ρ̂, σ̂) ; (ce, ρ̂′′, σ̂′)

where ([[(λ (v1 . . . vn) ce)]], ρ̂′) = Â(f, ρ̂, σ̂)

d̂i = A(æi, ρ̂, σ̂)

âi = âlloc(xi,)

ρ̂′′ = ρ′[v̂i 7→ âi]

σ̂′ = σ̂ t [ai 7→ di]

where the function Â : Exp × Ênv × Ŝtore → D̂ is the
abstract evaluator:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

Importantly, the abstract allocator produces a finite num-
ber of addresses: âlloc : Var × Σ̂→ ˆAddr.

2.3 Abstracting abstract-machines
The approach of abstracting a small-step abstract-machine
semantics produces a clean correspondence between the in-
terpreters because all unboundedness may be focused on
a single machine component and then removed upon ab-
straction. [9] In the above example, this is done by limit-
ing the address-space. For more complex abstract-machines
with other sources of recursion, threading them through the
address-space yields an approximation of these components
automatically. Take for example an explicit stack of con-
tinuations; in an concrete-semantics an unbounded stack is
required to ensure perfect precision. In an approximate se-
mantics however, we may obtain a bounded stack by store-
allocating continuation-frames as would be done implic-
itly in our CPS language. [8] In this way, the recursion of
this stack is explicitly cut and made finite. With this style
of abstraction, it is the only step necessary for introduc-
ing non-determinism into the semantics and for bounding
the machine’s state-space, leading to a computable over-
approximation.

Comparing the two semantics it is evident the abstract
semantics are isomorphic to the concrete semantics. It would
be convenient to be able to unify the semantics and build one
interpreter. Galois connections are the starting point of our
unification through galois unions.

3. Galois Connections
For the purpose of self-containment, we review Galois con-
nections and adjunctions as used in abstract interpretation.
Readers already versed in Galois theory and adjunctions may
wish to skim or skip this section. Informally, Galois connec-
tions and adjunctions are a generalization of isomorphism to
partially ordered sets. That is, in a Galois connection, the
two sets need not be locked into a one-to-one, structure-
preserving correspondence; rather, a Galois connection en-
sures the existence of order-preserving maps between the
sets.
Static analyses use Galois connections because a Galois con-
nection determines the tightest projection of a function over
one set, e.g., the concrete transfer function, into another set.
This projection is frequently interpretable as the optimal
static analysis.[10]

3.1 Conventions
A function f : X → X is order-preserving or monotonic
on poset (X,v) iff x v x′ implies f(x) v f(x′). The
natural ordering of a function over posets is compared range-
wise; that is:

f v g iff f(x) v g(x) for all x ∈ dom(X).

3.2 Review of Galois Connections
There are two kinds of Galois connections: monotone Ga-
lois connections and antitone Galois connections. Our work
focuses on monotone Galois connections, since antitone Ga-
lois connections are rarely used in static analysis.1 From this
point forward, Galois connection refers to monotone Galois
connection.

Definition 3.1. The 4-tuple (X,α, γ, X̂) is a Galois con-
nection where:

• (X,vX) is a partially ordered set;
• (X̂,vX̂) is a partially ordered set;
• α : X → X̂ is a monotonic function; and
• γ : X̂ → X is a monotonic function;

such that:

γ ◦ α w λx.x and α ◦ γ v λx̂.x̂. (3.1)

The proposition, “(X,α, γ, X̂) is a Galois connection,” is
denoted X −−→←−−α

γ
X̂ .

In static analysis, the set X is the concrete space and the
set X̂ is the abstract space, while the functions α and γ are
the abstraction and concretization maps.

The precise formulation of the Galois constraint on maps
(3.1) is useful in proofs, but an equivalent (if less terse)
formulation of it is more intelligible:

γ(α(x)) w x for all x ∈ X and α(γ(x̂)) v x̂ for all x̂ ∈ X̂ .

1 In fact, we cannot find a paper in static analysis outside of the Cousots’
original 1979 paper [4] that makes use of antitone Galois connections.

Informally, γ(α(x)) w x means that abstraction fol-
lowed by concretization will not discard information, while
α(γ(x̂)) v x̂means that concretization followed by abstrac-
tion may choose a more precise representative. Ordinarily,
the second constraint is strengthened to equality, so that:

α(γ(x̂)) = x̂,

in which case, we are dealing with a Galois insertion. In a
Galois insertion, there is only one abstract representative for
each concrete element, however any given abstract element
may have one or more concrete representatives. In most
abstract interpretations, the Galois connection is a Galois
insertion.

3.3 Adjunctions
It is often useful to cast a Galois connection as its equivalent
adjunction.

Definition 3.2. An adjunction is a 4-tuple (X,α, γ, X̂)
where:

• (X,vX) is a partially ordered set;
• (X̂,vX̂) is a partially ordered set;
• α : X → X̂ is a monotonic function; and
• γ : X̂ → X is a monotonic function;

such that:
α(x) v x̂ iff x v γ(x̂).

Theorem 3.1. (X,α, γ, X̂) is a Galois connection iff it is
an adjunction[10].

3.4 Calculating the optimal analysis from a Galois
connection

Galois connections allow the optimal static analysis to be
calculated from a concrete semantics. If X −−→←−−α

γ
X̂ and the

function f : X → X is monotonic, then the projection of
the function f into the poset X̂ is the function f̂ = α ◦
f ◦ γ. In effect, the function f̂ concretizes its input, runs
the concrete function, and then re-abstracts the output. If the
function f is a concrete semantics, then the projection f̂ is
its optimal static analysis (or the abstract semantics).

It is not necessary to prove a calculated analysis correct,
because all calculated analyses obeys the expected simula-
tion theorem:

Theorem 3.2. If X −−→←−−α
γ

X̂ and the function f : X → X

is monotonic, then the function f̂ = α ◦ f ◦ γ simulates the
function f ; that is, if:

α(x) v x̂,

then:
α(f(x)) v f̂(x̂).

Proof. Assume α(x) v x̂.

f̂(x̂) = (α ◦ f ◦ γ)(x̂)

= (α ◦ f)(γ(x̂))

w (α ◦ f)(x) by monotonicity of (α ◦ f)

and γ(x̂) w x
= α(f(x)).

2

In fact, given an optimal analysis f̂ , any function f̂ ′ such that
f̂ ′ w f̂ is also a sound simulation of the concrete function f .

4. Galois unions
The Galois union of a Galois connection provides a common
space in which to express both the concrete and abstract
semantics. Given a Galois connection X −−→←−−α

γ
X̂ , a Galois

union consists of a third poset X̃—the union space—and
two more Galois connections: a concrete-union connection,
X −−→←−−µ

ν
X̃ , and an abstract-union connection, X̂ −−→←−−κ

η
X̃:

X̃

ν
��

η

��
X

µ

??

α // X̂
γ

oo

κ

__

The newly introduced Galois connections are constrained so
that the projection of the concrete semantics into the union
space remains equivalent to the concrete semantics, while
the projection of the optimal analysis remains equivalent to
the optimal analysis:

Definition 4.1. The structure (X̃, µ, ν, κ, η) is a Galois
union with respect to the Galois connection X −−→←−−α

γ
X̂

iff X −−→←−−µ
ν

X̂ and X̃ −−→←−−η
κ

X̂ , and:

µ ◦ ν = λx̃.x̃ (4.1)

ν ◦ µ = λx.x (4.2)

η ◦ κ = λx̂.x̂ (4.3)

η = α ◦ ν. (4.4)

Informally, constraints (4.1) and (4.2) indicate that the
union space X̃ is actually isomorphic to the concrete space;
we can move between them with absolutely no loss of pre-
cision or information. Constraint (4.3) means that we can
inject from the abstract space into the union space with no
loss of precision, while constraint (4.4) indicates that the ab-
straction map from the union space to the abstract space is
isomorphic to the abstraction map from the concrete space
to the abstract space.

It is irrelevant how one decides to construct the Galois
union of a Galois connection, because all such unions are
structurally identical to one another:

Theorem 4.1. All Galois unions of a Galois connection
X −−→←−−α

γ
X̂ are equivalent up to an order-preserving iso-

morphism.

Proof. Let X −−→←−−α
γ

X̂ be a Galois insertion. Let
(X̃, µ, ν, κ, η) and (X̃ ′, µ′, ν′, κ′, η′) be two Galois unions.
We shall construct order-preserving maps, f and f ′, be-
tween these two unions, and then show that these maps are
inverses to each other. Define the functions f : X̃ → X̃ ′ and
f ′ : X̃ ′ → X̃ so that:

f = µ′ ◦ ν
f ′ = µ ◦ ν′.

Then, observe:

f ◦ f ′ = (µ′ ◦ ν) ◦ (µ ◦ ν′)
= µ′ ◦ (ν ◦ µ) ◦ ν′

= µ′ ◦ ν′

= λx̃′.x̃′.

An identical argument shows that f ′ ◦ f = λx̃.x̃. 2

4.1 The natural Galois union
Given a Galois connection, we can construct a “natural”
Galois union from its abstraction and concretization maps.
Given a Galois connection X −−→←−−α

γ
X̂ , find the set of con-

crete elements precisely represented in the abstract, P :

P = {x : γ(α(x)) = x} .

The natural union space is then X̃ = X̂ + (X − P) with
ordering (vX̃):

x vX̃ x′ iff x vX x′

x vX̃ x̂′ iff x vX γ(x̂′)

x̂ vX̃ x′ iff γ(x̂) vX x′

x̂ vX̃ x̂′ iff γ(x̂) vX γ(x̂′).

The definition of the natural Galois union (X̃, µ, ν, κ, η) is:

µ(x) =

{
x x 6∈ P
α(x) x ∈ P

ν(x̃) =

{
x x ∈ X
γ(x) x ∈ X̂

κ(x̂) = x̂

η(x̃) =

{
x̃ x̃ ∈ X̂
α(x̃) x̃ ∈ X .

4.2 Projecting into the Galois union
We can use the two additional Galois connections provided
by the Galois union to project both the concrete and the

abstract semantics into the shared union space. According
to the Galois connection X −−→←−−µ

ν
X̃ , the projection of the

monotonic concrete semantics function f : X → X into the
union space can be calculated, f̃ : X̃ → X̃:

f̃ = µ ◦ f ◦ ν.

The projection of the optimal analysis f̂ : X̂ → X̂ into the
union space may be similarly calculated:

˜̂
f = κ ◦ f̂ ◦ η

= κ ◦ α ◦ f ◦ γ ◦ η.

4.3 The lattice of semantics
At this point, we are close to our goal of a unified im-
plementation. We have two separate functions—a concrete
semantics for interpretation and an abstract semantics for
analysis—that inhabit a common state-space. Our next task
is to relate these two functions to one another in order to
guide a unified implementation. To do so, we will show that
these two functions actually form the top and bottom of an
entire lattice of hybrid semantics. That is, the bottom of this
lattice is the concrete semantics, and the top of this lattice is
the optimal analysis.

To construct the lattice, we first show that the concrete
semantics (f̃) are weaker than the optimal analysis (˜̂

f) ac-
cording to the natural ordering on functions:

Theorem 4.2. Given a Galois connection X −−→←−−α
γ

X̂ , a
Galois union thereof (X̃, µ, ν, κ, η), and a monotonic func-
tion f : X → X , the projection of f into the union space,
f̃ : X̃ → X̃ is weaker than the projection of the projection
of f into X̂ into X̃ , ˜̂

f ; that is:

f̃ v ˜̂
f ,

or equivalently:

f̃(x̃) v ˜̂
f(x̃) for all x̃ ∈ X̃ .

Proof. Pick any x̃ ∈ X̃ . We must show that f̃(x̃) v ˜̂
f(x̃). We

proceed by cases.
• Case x̃ ∈ X: Observe that:

f̃(x̃) = (µ ◦ f ◦ ν)(x̃)
= f(x̃) when f(x̃) 6∈ P or α(f(x̃)) when f(x̃) ∈ P ,

and that:

˜̂
f(x̃) = (κ ◦ f̂ ◦ η)(x̃)

= (κ ◦ α ◦ f ◦ γ ◦ η)(x̃)
= (κ ◦ α ◦ f ◦ γ ◦ (α ◦ ν))(x̃)
= (κ ◦ α ◦ f ◦ γ ◦ α)(x̃)
w (κ ◦ α ◦ f)(x̃)
= α(f(x̃)).

We must show that f(x̃) vX̃ α(f(x̃)) when γ(α(f(x̃))) =X

f(x̃), and this side condition directly satisfies the definition of
subsumption.

• Case x̃ ∈ X̂: Observe that:

f̃(x̃) = (µ ◦ f ◦ ν)(x̃)
= f(γ(x̃)) when f(γ(x̃)) 6∈ P or α(f(γ(x̃)))

when f(γ(x̃)) ∈ P ,

and that:
˜̂
f(x̃) = (κ ◦ f̂ ◦ η)(x̃)
˜̂
f(x̃) = (κ ◦ f̂)(x̃)

= (κ ◦ α ◦ f ◦ γ)(x̃)
= α(f(γ(x̃))),

which leads to a resolution identical to the prior case.

2

Knowing that the concrete semantics is weaker than the
abstract semantics under the partial order on the union space,
we know that the ordered interval [f̃ ,

˜̂
f]2 will be nonempty.

Furthermore, if X̃ is a lattice (and it nearly always will be in
static analysis), then we can define the join of two semantics
function g, h ∈ [f̃ ,

˜̂
f]:

g t h = λx̃.g(x̃) t h(x̃),

which means that the function space [f̃ ,
˜̂
f] is itself a lattice.

4.4 Exploiting the lattice: Abstractable interpretation
Practically speaking, the lattice of semantics means that a
static analysis may choose to transition using any member
of that lattice. This, in turn, leads to a tactic for static analy-
sis that we term abstractable interpretation. Under this tac-
tic, analysis begins execution with the concrete semantics.
The analysis continues execution with the concrete seman-
tics until it encounters non-determinism (I/O) or until a con-
servative heuristic detects non-terminating behavior.3 At this
point, the analysis then widens the semantics itself (rather
than widening the state of the analysis) to a point higher up
the lattice of semantics.

This simple tactic offers practical benefits for at least one
common static analysis problem: the global data initializa-
tion problem [2]. Consider all of the data that is written once
during or shortly after a program’s initialization, e.g., vir-
tual function tables in a C++ executable and top-level defines
in a Scheme program. In an ordinary abstract interpretation,
global data is seen as having two possible values simultane-
ously: the uninitialized value and then the value it holds for

2 This is the interval construction from Tarski’s proof of his lattice-theoretic
fixed point theorem [13], whereby [a, b] = {c : a v c v b}.
3 For example, a suitable conservative heuristic is “the program may be non-
terminating if it has taken more than n transitions.”

the program’s lifetime. Initializing a static analysis by first
executing the concrete semantics for as long as possible al-
lows all of this uninitialized data to be set to its final value
with strong updates before the true static analysis phase.

5. Case Study: CPS λ-calculus/k-CFA
To demonstrate the applicability of Galois unions, we will
construct a structural Galois-connection-based abstract in-
terpretation of continuation-passing style (CPS) λ-calculus
that was examined in section 2, which yields k-CFA. We
will then construct a Galois union for a single substructure
within this abstract interpretation: abstract addresses. Me-
chanically, this change is small, yet it allows the allocation
function parameter to promote the abstract semantics back
into a concrete semantics, in addition to determining the
context-sensitivity of k-CFA.

We use a CPS λ-calculus:

e ∈ Exp = Lam + Var [expressions]
v ∈ Var = 〈variables〉 [variables]

lam ∈ Lam ::= λv1 . . . vn.call [λ-terms]
call ∈ Call ::= e0 e1 . . . en [function application].

5.1 Constructing the Galois connection
We define a concrete state-space for continuation-passing
style λ-calculus:

ς ∈ Σ = Call× Env × Store
ρ ∈ Env = Var→ Addr
σ ∈ Store = Addr → D
d ∈ D = Clo

clo ∈ Clo = Lam× Env
a ∈ Addr is an infinite set of addresses,

and an abstract state-space:

ς̂ ∈ Σ̂ = Call>⊥ × Ênv × Ŝtore

ρ̂ ∈ Ênv = Var→ Âddr

σ̂ ∈ Ŝtore = Âddr → P
(
D̂
)

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam>⊥ × Ênv

â ∈ Âddr is a finite set of addresses.

The Galois connection process begins by examining the
leaves of the state-space. In this case, the key leaf is the
set of addresses: Addr . We assume some address-abstractor
β : Addr → Âddr , β maps infinite address spaces to the
finite set of abstract spaces. We then use it to define a Galois
connection:

(P (Addr), α, γ, Âddr).

This is the particular Galois connection that we will revisit
when constructing the Galois union. We can lift this Galois
connection to a function space:

(P (Var→ Addr), α1, γ1,Var→ Âddr)

= (P (Env), α1, γ1, Ênv).

λ-terms lift into a flat Galois connection:

(P (Lam), α2, γ2, Lam
>
⊥),

which makes it easy to construct a Galois connection over
closures:

(P (Lam× Env), α3, γ3, Lam
>
⊥ × Ênv)

= (P (Clo), α3, γ3, Ĉlo).

By promoting closures to a fully relational Galois connec-
tion, we have a Galois connection for values:

(P (Clo), α4, γ4,P(Ĉlo)) = (P (D), α4, γ4, D̂).

Lifting once again yields a Galois connection over stores:

(P (Addr → D), α5, γ5, Âddr → D̂)

= (P (Store), α5, γ5, Ŝtore).

The Galois connection for call sites is flat:

(P (Call), α6, γ6,Call
>
⊥).

Combining all of the above yields a Galois connection on
states:

(P (Call× Env × Store), α7, γ7,Call
>
⊥ × Ênv × Ŝtore)

= (P (State), α7, γ7, Ŝtate),

which can be lifted into a more precise abstraction:

(P (State), α8, γ8,P(Ŝtate)).

5.2 Calculating an abstract semantics
The transfer function f : Σ → Σ describes the concrete
semantics:

f

ς︷ ︸︸ ︷
([[e0 e1 . . . en]], ρ, σ) = (call , ρ′′, σ′), where:

([[λv1 . . . vn.call]], ρ
′) = A(e0, ρ, σ)

ai = alloc(vi, ς)

ρ′′ = ρ′[vi 7→ ai]

σ′ = σ[ai 7→ di]

di = A(ei, ρ, σ),

where the function A : Exp × Env × Store → D is the
argument evaluator:

A(v, ρ, σ) = σ(ρ(v))

A(lam, ρ, σ) = (lam, ρ),

Figure 1. Injection Into the Start State

and the allocator alloc : Var × Σ → Addr allocates a fresh
address.

Promoting the transfer function to sets gives the function
F : P (Σ)→ P (Σ):

F (S) = f.S = {f(ς) : ς ∈ S} ,

which allows us to calculate the optimal analysis, F̂ = α8 ◦
F ◦ γ8.

A series of calculations (Appendix A.1) then finds a com-
putable static analysis:

F̂{

ς̂︷ ︸︸ ︷
(call , ρ̂, σ̂)} v


(call ′, ρ̂′′, σ̂′) :



âi = âlloc(vi, ς̂)
([[λv1 . . . vn.call]], ρ̂′)

∈ Â(e0, ρ̂, σ̂)
ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ d̂i]

d̂i = Â(ei, ρ̂, σ̂)




,

where the function Â : Exp × Ênv × Ŝtore → D̂ is the
abstract evaluator:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v))

Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

And, we have the constraint whereby any function âlloc such
that:

α7 {ς} v ς̂ implies α {alloc(v, ς)} = âlloc(v, ς̂),

leads to a sound analysis.

5.3 Constructing the Galois union
As it turns out, constructing the Galois union for the entire
Galois connection over state-spaces P (Σ) −−−→←−−−α8

γ8 P(Σ̂),
while sufficient, is not necessary. Rather, as is often the case
in practice, it is sufficient (and easier) to construct the Galois
union for only the leaves of the state-spaces. And, in this
case, the only leaf of consequence is the Galois connection
over addresses: P (Addr) −−→←−−α

γ
Âddr .4 The natural Galois

union-space for addresses is the set Ãddr ⊂ P (Addr) +

Âddr , which then percolates up to create a union-space for

4 Constructing the Galois unions of the other leaves—Var and Call—yields
exactly the abstract space again.

states:

ς̃ ∈ Σ̃ = Call>⊥ × Ẽnv × S̃tore

ρ̃ ∈ Ẽnv = Var→ Ãddr

σ̃ ∈ S̃tore = Ãddr → D̃

d̃ ∈ D̃ = P(C̃lo)
˜clo ∈ C̃lo = Lam>⊥ × Ẽnv .

5.4 Calculating a unified implementation
To extract the unified implementation, we replace the set of
abstract addresses with the set of unioned addresses, and
repeat the prior projection process exactly. This results in
a “new” unified transfer function:

F̃{

ς̃︷ ︸︸ ︷
(call , ρ̃, σ̃)} v


(call ′, ρ̃′′, σ̃′) :



ãi = ãlloc(vi, ς̃)
([[λv1 . . . vn.call]], ρ̃′)
∈ Ã(e0, ρ̃, σ̃)

ρ̃′′ = ρ̃′[vi 7→ ãi]

σ̃′ = σ̃ t [ãi 7→ d̃i]

d̃i = Ã(ei, ρ̃, σ̃)




.

Of course, these transfer functions looks identical (modulo
t̃ildes and ĥats) to the previously derived transfer function.
The difference comes in that the allocation function, ãlloc :
Var × Σ̃ → Ãddr—which allocates addresses—is now
free to allocate sets of concrete addresses alongside abstract
addresses. If this allocation function mimics the behavior
of the original concrete allocator (by allocating singletons),
then the result is a sound and complete simulation of the
concrete semantics; but if this allocation function mimics
the behavior of the abstract allocator, the result is k-CFA. In
practice, the implementations of either allocator takes about
one line of code, which means that for the cost of the static
analysis plus one line of code, we also obtain the concrete
semantics.

6. Implementation: CESK
To show how the unified representation works in practice
we developed an implementation5 of ANF λ-Calculus based
on the CESK machine [6]modified to use galois unions. To
implement it we used the domain specific language PLT
Redex[7]. The implementation will use the concrete seman-
tics for an arbitrarily large yet finite amount of states and

5 http://github.com/LeifAndersen/CESKRedex/

Figure 2. Branching to Multiple States

conclude with the abstract semantics. The user may spec-
ify the threshold at which it switches from the concrete to
the abstract machine. The machine can also run completely
concretely or completely abstractly.

(define-metafunction CESK~

alloc~ : store~ x -> addr~

[(alloc~ store~ x)

,(if

((length (flatten (term store~))) . < . 100)

(variable-not-in (term store~) (term x))

(term x))])

Figure 3. Allocation Metafunction

The abstract semantics and the unified semantics differ
in the allocation function. The abstract semantics allocates
abstract addresses and abstract values. The unified semantics
generates concrete values in addition to abstract values but
limits the allocation such that it still contains a finite amount
of space. This small change allows the allocation function
parameter to promote the abstract semantics back into a
concrete semantics.

An example makes it clear to see the machine abstract
itself and allocate concretely and abstractly.

6.1 Example: Factorial
The code under analysis in Figure 2 is Factorial of four.
To demonstrate the effectiveness of the CESK machine, as
shown in Figure 1, the program is injected into a start state
with an empty environment, an empty store, and the halt con-
tinuation. The program continues in the concrete semantics
for a finite amount of states.

Eventually the code will reach Figure 3 in which it will
switch to the abstract semantics and branch into multiple
states until the analysis terminates.The ability to switch from
concrete to abstract and visualize the states gives analysts
using this tool a clearer picture of their analyses.

(letrec

((f (lambda (x)

(if (= x 0)

1

(let ((x-1 (- x 1)))

(let ((y (f x-1)))

(* x y)))))))

(f 4))

Figure 4. Factorial

In our implementation we built the concrete interpreter,
an abstract interpreter and a unified interpreter to compare
the amount of engineering effort that was needed. In terms of
lines of code the abstract machine was 14 more lines of code
than the concrete machine. The unified machine was the
same number of lines of code as the abstract machine. For
14 extra lines of code we get a static analyzer that doubles
as a concrete interpreter.

7. Related Work
The idea that a concrete interpreter is also an incomputable
static analysis is at least as old the Cousots’ original work [3]
on abstract interpretation. The inverse of that idea—that a
static analysis can be systematically engineered to also serve
as a concrete interpreter in addition to its regular duties—is,
to the best of our knowledge, novel. Our definition of Galois
Union, a property of a Galois connection, is novel as well.

The Cousots’ early work details using Galois connections
to systematically design static analyses [4]. The Cousots’
later work on higher-order abstract interpretation [5] and
Nielson, Nielson and Hankin’s work [10] provide a com-
plete treatement of both abstract interpretation and Galois

connections. k-CFA, in the form that we derive it here, is
closely related to Shivers’s original formualtion [12].

8. Conclusion
Our goal was to use Galois unions to guide an implementa-
tion of a static analyzer that doubles as a concrete interpreter.
We provided a framework to systematically enhance an ab-
stract interpretation to also behave as a concrete interpreter.

This material is partially based on research sponsored by
DARPA under agreement number FA8750-12- 2-0106 and
by NSF under CAREER grant 1350344. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon.

References
[1] A. W. Appel. Compiling with Continuations. Cambridge

University Press, February 2007. ISBN 052103311X.

[2] G. Balakrishnan and T. Reps. Recency-abstraction for heap-
allocated storage. In Proceedings of the Static Analysis Sym-
posium, Seoul, Korea, 2006.

[3] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proceedings of the Symposium
on Principles of Programming Languages, pages 238–252,
Los Angeles, CA, 1977. ACM Press, New York.

[4] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In Proceedings of the Symposium on
Principles of Programming Languages, pages 269–282, San
Antonio, TX, 1979. ACM Press, New York.

[5] P. Cousot and R. Cousot. Higher-order abstract interpretation
(and application to comportment analysis generalizing strict-
ness, termination, projection and per analysis of functional
languages). In n Proceedings of the 1994 International Con-
ference on Computer Languages, pages 238–252, 1994.

[6] M. Felleisen and D. P. Friedman. A calculus for assignments
in higher-order languages. In Proceedings of the Symposium
on Principles of Programming Languages, page 314, New
York, NY, 1987. ACM.

[7] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. MIT Press, 2009. ISBN 0262062755
9780262062756.

[8] D. V. Horn and M. Might. Abstracting abstract machines.
In Proceedings of the International Conference on Functional
Programming, September 2010.

[9] M. Might. Abstract interpreters for free. In 17th International
Symposium, SAS 2010, Perpignan, France, September 14-16,
2010. Proceedings, volume 6337, pages 407–421, 2010.

[10] F. Nielson and C. H. Hanne R Nielson. Principles of Program
Analysis. Springer, 1999.

[11] O. Shivers. Control flow analysis in scheme. In Proceedings
of the Conference on Programming Language Design and
Implementation, pages 164–174, New York, NY, 1988. ACM.

[12] O. Shivers. Control-Flow Analysis of Higher-Order Lan-
guages. PhD thesis, School of Computer Science, Carnegie-
Mellon University, Pittsburgh, PA, 1988.

[13] A. Tarski. A lattice-theoretical fixpoint theorem and its appli-
cations. pages 285–309, 1955.

A. Appendix
A.1 Calculation of k-CFA
We include the remainder of the calculation of k-CFA here:

F̂ {(call , ρ̂, σ̂)} = (α8 ◦ F ◦ γ8) {(call , ρ̂, σ̂)}
= (α8 ◦ F)(γ8 {(call , ρ̂, σ̂)})
= (α8 ◦ F) {(call , ρ, σ) : α1 {ρ} v ρ̂ and α5 {σ} v σ̂}
= (α8) {f(call , ρ, σ) : α1 {ρ} v ρ̂ and α5 {σ} v σ̂}
=

⊔
{{α7 {f(call , ρ, σ)}} : α1 {ρ} v ρ̂ and α5 {σ} v σ̂} .

An inconsequential weakening makes the last line easier to
understand:

F̂ {(call , ρ̂, σ̂)} v
{α7 {f(call , ρ, σ)} : α1 {ρ} v ρ̂ and α5 {σ} v σ̂} .

To proceed, we can expand the transfer function and the
abstraction function:

F̂{(call, ρ̂, σ̂)} v
(call ′, α1

{
ρ′′
}
, α5

{
σ′}) :



α1 {ρ} v ρ̂
α5 {σ} v σ̂
([[λv1 . . . vn.call]], ρ

′)
= A(e0, ρ, σ)

ai = alloc(vi, ς)
ρ′′ = ρ′[vi 7→ ai]
σ′ = σ[ai 7→ di]
di = A(ei, ρ, σ)




.

(A.1)
We make a series of observations. Suppose that α1 {ρ} v ρ̂
and α5 {σ} v σ̂. Then let clo = ([[λv1 . . . vn.call]], ρ

′) =
A(e0, ρ, σ). By cases, we can show that for any expression
e:

α3 {A(e, ρ, σ)} v Â(e, ρ̂, σ̂).

There must exist a closure ĉlo = (lam, ρ̂) ∈ Â(exp0, ρ̂, σ̂)
such that:

α3 {clo} v ĉlo.

So, we may further weaken the function F̂
F̂{(call, ρ̂, σ̂)} v

(call ′, α1

{
ρ′′
}
, α5

{
σ′}) :



α1 {ρ} v ρ̂
α5 {σ} v σ̂
([[λv1 . . . vn.call]], ρ̂

′)

∈ Â(e0, ρ̂, σ̂)
α1 {ρ′} v ρ̂′
ai = alloc(vi, ς)
ρ′′ = ρ′[vi 7→ ai]
σ′ = σ[ai 7→ di]
di = A(ei, ρ, σ)




.

Thus, assuming α1 {env′} v ρ̂′ and α {ai} = âi:

α1 {ρ′′} v ρ̂′′ = ρ̂′[vi 7→ ai].

Then, we have:

α3 {di} v d̂i = Â(ei, ρ̂i, σ̂i)

α5 {σ′} v σ̂′ = σ̂ t [âi 7→ d̂i].

All of this permits a further weakening:

F̂ {(call , ρ̂, σ̂)} v(call ′, ρ̂′′, σ̂′) :


([[λv1 . . . vn.call]], ρ̂

′)

∈ Â(e0, ρ̂, σ̂)
ρ̂′′ = ρ̂′[vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ d̂i]

d̂i = Â(ei, ρ̂, σ̂)



 .

